Skip to main content

In Silico Analysis, Synthesis, and Biological Evaluation of Triazole Derivatives as H1 Receptor Antagonist

Buy Article:

$68.00 + tax (Refund Policy)

Introduction: Histamine, a biological amine, is considered as a principal mediator of many pathological processes regulating several essential events in allergies and autoimmune diseases. Numerous derivatives have been developed that strive with histamine at the H1 receptor and prevent binding of histamine at the H1 receptor, thereby preventing allergic reactions. Molecules containing a triazole ring fused with six-membered ring systems are found to possess broad applications in the field of medicine and industry. The present study is an attempt to characterize the impact of the nature of the substituent introduced at 5 positions of the-4H-1,2,4-triazole-3-thiol on their capacities to bind with the H1 receptor.

Methods: Molecular docking (PDB ID: 3RZE) revealed that synthesized derivatives and target proteins were actively involved in binding with Tyr-108, Thr-112, Ala-216, and Phe-432 subunits. A pharmacophore model, new 5-(4-substituted phenyl)-4-(phenylamino)-4-H-1,2,4-triazole-3- thiols (5a-5h) were designed and evaluated for H1-blocking activity using isolated segments from the guinea pig ileum.

Results: According to in silico analysis, all the compounds have a topological polar surface area (TPSA) less than 140 Å squared, so they tend to easily penetrate cell membranes. The results show that most of the compounds are non-inhibitors of CYP450 substrates that play a fundamental role in drug metabolism. Compounds 5d (50.53±12.03), 5h (50.62±12.33) and 7a (55.07±12.41) are more active than others.

Conclusion: Finally, these derivatives were screened for H1 receptor antagonist activity using guinea pig ileum, taking chlorpheniramine maleate as a standard. Most of the compounds were found to possess better antihistamine activity.

Keywords: 1; 2; 4-triazole; H1 Receptor; Histamine; TPSA; guinea pig ileum; molecular docking

Document Type: Research Article

Publication date: 01 July 2021

More about this publication?
  • Due to the plethora of new approaches being used in modern drug discovery by the pharmaceutical industry, Current Drug Discovery Technologies has been established to provide comprehensive overviews of all the major modern techniques and technologies used in drug design and discovery. The journal is the forum for publishing both original research papers and reviews describing novel approaches and cutting edge technologies used in all stages of drug discovery. The journal addresses the multidimensional challenges of drug discovery science including integration issues of the drug discovery process.

    Current Drug Discovery Technologies is an essential journal for all scientists and research managers involved in drug discovery who wish to keep abreast of all the modern techniques and technologies used in drug discovery.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content